FP2 Paper 5 *adapted 2005

1. (a) Sketch the graph of $y=|x-2 a|$, given that $a>0$.
(b) Solve $|x-2 a|>2 x+a$, where $a>0$.
(3)(Total 5 marks)
2. Find the general solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \cot 2 x=\sin x, \quad 0<x<\frac{\pi}{2}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
(Total 7 marks)
3. (a) Show that the transformation $y=x v$ transforms the equation

$$
\begin{align*}
& \qquad x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2+9 x^{2}\right) y=x^{5}, \\
& \text { into the equation } \\
& \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+9 v=x^{2} . \tag{5}
\end{align*}
$$

(b) Solve the differential equation II to find v as a function of x.
(c) Hence state the general solution of the differential equation I.
(1)(Total 12 marks)
4. The curve C has polar equation $r=6 \cos \theta, \quad-\frac{\pi}{2} \leq \theta<\frac{\pi}{2}$, and the line D has polar equation $\quad r=3 \sec \left(\frac{\pi}{3}-\theta\right),-\frac{\pi}{6}<\theta<\frac{5 \pi}{6}$.
(a) Find a cartesian equation of C and a cartesian equation of D.
(b) Sketch on the same diagram the graphs of C and D, indicating where each cuts the initial line.

The graphs of C and D intersect at the points P and Q.
(c) Find the polar coordinates of P and Q.
5. Find the general solution of the differential equation

$$
(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\frac{1}{x}, \quad x>0
$$

giving your answer in the form $y=\mathrm{f}(x)$.
(7)(Total 7 marks)
6. (a) On the same diagram, sketch the graphs of $y=\left|x^{2}-4\right|$ and $y=|2 x-1|$, showing the coordinates of the points where the graphs meet the axes.
(b) Solve $\left|x^{2}-4\right|=|2 x-1|$, giving your answers in surd form where appropriate.
(c) Hence, or otherwise, find the set of values of x for which $\left|x^{2}-4\right|>|2 x-1|$.
(3)(Total 12 marks)
7. (a) Find the general solution of the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 x=2 t+9 \tag{6}
\end{equation*}
$$

(b) Find the particular solution of this differential equation for which $x=3$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=-1$ when $t=0$.

The particular solution in part (b) is used to model the motion of a particle P on the x-axis. At time t seconds $(t \geq 0), P$ is x metres from the origin O.
(c) Show that the minimum distance between O and P is $\frac{1}{2}(5+\ln 2) \mathrm{m}$ and justify that the distance is a minimum.
(4)(Total 14 marks)
8. The curve C which passes through O has polar equation

$$
r=4 a(1+\cos \theta), \quad-\pi<\theta \leq \pi .
$$

The line l has polar equation

$$
r=3 a \sec \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2} .
$$

The line l cuts C at the points P and Q, as shown in the diagram.
(a) Prove that $P Q=6 \sqrt{ } 3 a$.

The region R, shown shaded in the diagram, is bounded by l and C.
(b) Use calculus to find the exact area of R.

(7)(Total 13 marks)
9. A complex number z is represented by the point P in the Argand diagram. Given that

$$
|z-3 i|=3,
$$

(a) sketch the locus of P.
(b) Find the complex number z which satisfies both $|z-3 i|=3$ and $\arg (z-3 i)=\frac{3}{4} \pi$.

The transformation T from the z-plane to the w-plane is given by

$$
w=\frac{2 \mathrm{i}}{z} .
$$

(c) Show that T maps $|z-3 i|=3$ to a line in the w-plane, and give the cartesian equation of this line.
(5)(Total 11 marks)
10. (a) Given that $z=\mathrm{e}^{\mathrm{i} \theta}$, show that

$$
z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

where n is a positive integer.
(b) Show that

$$
\begin{equation*}
\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta) \tag{5}
\end{equation*}
$$

(c) Hence solve, in the interval $0 \leq \theta<2 \pi$,

$$
\sin 5 \theta-5 \sin 3 \theta+6 \sin \theta=0
$$

(5)(Total 12 marks)
11. The variable y satisfies the differential equation

$$
4\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y .
$$

At $x=0, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$.
(a) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at $x=0$.
(1) (c) Find the value of $\frac{\mathrm{d}^{3} y}{\mathrm{dx}^{3}}$ at $x=0$
(d) Express y as a series, in ascending powers of x, up to and including the term in x^{3}.
(e) Find the value that the series gives for y at $x=0.1$, giving your answer to 5 decimal places.
(1)(Total 14 marks)

